# SparTerm: Learning Term-based Sparse Representation for Fast Text Retrieval

Qun Liu (刘群)

Huawei Noah's Ark Lab

智能信息检索与挖掘专题论坛 2021北京智源大会,2021-06-06



#### SparTerm: Learning Term-based Sparse Representation for Fast Text Retrieval

Yang Bai\*<sup>†</sup> Tsinghua University Xiaoguang Li\* Huawei Noah's Ark Lab Lifeng Shang

Chaoliang Zhang Lifeng Shang Huawei Noah's Ark Lab Huawei Noah's Ark Lab

Zhaowei Wang Huawei Noah's Ark Lab Fangshan Wang Huawei Technologies Co., Ltd Gang Wang Huawei Noah's Ark Lab

Jun Xu Renmin University of China

Qun Liu Huawei Noah's Ark Lab

#### ABSTRACT

Term-based sparse representations dominate the first-stage text retrieval in industrial applications, due to its advantage in efficiency. interpretability, and exact term matching. In this paper, we study the problem of transferring the deep knowledge of the pre-trained language model (PLM) to Term-based Sparse representations, aiming to improve the representation capacity of bag-of-words(BoW) method for semantic-level matching, while still keeping its advantages. Specifically, we propose a novel framework SparTerm to directly learn sparse text representations in the full vocabulary space. The proposed SparTerm comprises an importance predictor to predict the importance for each term in the vocabulary, and a gating controller to control the term activation. These two modules cooperatively ensure the sparsity and flexibility of the final text representation, which unifies the term-weighting and expansion in the same framework. Evaluated on MSMARCO dataset, SparTerm significantly outperforms traditional sparse methods and achieves state of the art ranking performance among all the PLM-based sparse models.

| Query                      | Can hives be a sign of pregnancy?                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Type                       | Term frequency                                                                                                                                                                                                                                                                                                  | SparTerm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Literal<br>term<br>Weights | Howe are caused by allergic<br>reactions. the dryness and<br>stretching by your skin along<br>with other changes can have you<br>nor susceptible to experiencing<br>them build by an allergic<br>reaction to almost anything.<br>Same common causes of flower<br>during pregnancy are noted below<br>i medicine | TRACEMENT PERSONNAL AND A CONTRACT A |  |  |  |  |  |  |  |
| Term<br>expansion          |                                                                                                                                                                                                                                                                                                                 | symptoms:1.0, women:0.99,<br>rash:0.98, feel:0.99, causing:0.97,<br>body:0.96, affect:0.96, baby:0.94,<br>pregnant:0.93, <b>sign:0.91</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |

Figure 1: The comparison between BoW and SparTerm representation. The depth of the color represents the term weights, deeper is higher. Compared with BoW, SparTerm is able to figure out the semantically important terms and expand some terms not appearing in the passage but very semantically relevant, even the terms in the target query such as "sign".

#### Cite as: arXiv:2010.00768





Introduction: Sparse vs. Dense Representation

Related Work: Neural Sparse Representation

SparTerm

**Conclusion and Future Work** 



#### Introduction: Sparse vs. Dense Representation

**Related Work: Neural Sparse Representation** 

SparTerm

**Conclusion and Future Work** 

### Some Preliminaries for Fast Text Retrieval





### Sparse or Dense Representation for Text Retrieval?

- For Exact Lexical Matching:
  - BM25 performs the best
  - Improve dense by increasing the dim and #vectors, but still worse than BM25



Yuan et al., Sparse, Dense, and Attentional Representations for Text Retrieval, Google



### Sparse or Dense Representation for Text Retrieval?

- For Semantic Matching:
  - BM25 performs the worst
  - PLM-based dense models show advantages to address the "lexical mismatch" problem



Yuan et al., Sparse, Dense, and Attentional Representations for Text Retrieval, Google



### Sparse or Dense Representation for Text Retrieval?

- Moreover, for industrial scenarios we have to consider:
  - Efficiency: Processing >50 billions docs
  - Interpretability: Predictable retrieval results
  - Maintainability: Easy to update





#### What Makes a Good Sparse Representation?

- Two aspects for improving sparse representation
  - Representation capacity: distinguishing ability for similar inputs
  - Representation sparsity: the proportion of # zero elements
- Improving representation capacity
  - For hot queries, we need better term weights
  - For rare queries, we need a "unbiased" words distribution estimation

#### Query: Medication for gum disease

Drugs Used to Treat Gum Disease Antibiotic treatments can be used either in combination with surgery and other therapies, or alone, to reduce or temporarily eliminate the bacteria associated with gum disease or suppress destruction of the tooth's attachment to the bone







Introduction: Sparse vs. Dense Representation

Related Work: Neural Sparse Representation

SparTerm

**Conclusion and Future Work** 

### SNRM: Standalone Neural Ranking Model

- Learning sparse representation on latent space
  - Training optimized for information retrieval
  - Efficiently retrieve/inference using inverted index



Zamani, Hamed, et al. From neural re-ranking to neural ranking: Learning a sparse representation for inverted indexing.



## Doc2Query: Seq2seq term expansion

- Document Expansion by Query Prediction
  - Expanded terms bring better literal term weights
  - Expanded terms help narrow the "lexical mismatch" gap
  - T5 brings significant improvements over from-scratch model



|                                      | MRF   | R@10  | R@1000 | Latency    |
|--------------------------------------|-------|-------|--------|------------|
|                                      | Dev   | Test  | Dev    | (ms/query) |
| BM25 (Anserini)                      | 0.184 | 0.186 | 0.853  | 55         |
| doc2query, top- $k$ , 10 samples     | 0.218 | 0.215 | 0.891  | 61         |
| docTTTTTquery, top-k, 5 samples      | 0.259 | -     | 0.929  | 58         |
| docTTTTTquery, top- $k$ , 10 samples | 0.265 | -     | 0.939  | 61         |
| docTTTTTquery, top-k, 20 samples     | 0.272 | -     | 0.944  | 62         |
| docTTTTTquery, top- $k$ , 40 samples | 0.277 | 0.272 | 0.947  | 64         |
| docTTTTTquery, top-k, 80 samples     | 0.278 | -     | 0.945  | 66         |
| DeepCT [2]                           | 0.243 | 0.239 | 0.913  | 55         |
| Best non-ensemble, non-BERT [5]      | 0.290 | 0.277 | -      | -          |
| BM25 + BERT Large [7]                | 0.375 | 0.368 | 0.853  | 3,500      |

Table 1: Main results on MS MARCO the passage retrieval task.

Nogueira, Rodrigo, et al. Document expansion by query prediction.



# DeepCT(HDCT): PLM-based term weighting

- Context-Aware Passage Term Importance Estimation
  - A term weights regression model based on PLM
  - Supervision of document term weights: relevant query, anchor text…



Dai, Zhuyun, and Jamie Callan. Context-Aware Term Weighting For First Stage Passage Retrieval.





Introduction: Sparse vs. Dense Representation

Related Work: Neural Sparse Representation

SparTerm

Conclusion and Future Work



SparTerm Method Evaluatio Analysis

# Learning a term-based sparse representation in the full vocab space

- Better capacity: full vocabulary weighting
- Better sparsity/term activation: decoupled design of weighting and sparsification



Figure 2: Full vocabulary weighting vs. self-weighting. In the self-weighting mechanism, each contextualized term representation only predicts the term weight for itself, while in the full vocabulary weighting, each term predicts a weight distribution in the full vocabulary.





#### The model architecture

- The Importance Predictor: predict the importance for each term in the vocabulary
- The Gating Controller: control the term activation





### Combination of importance predictor and gate controller





#### **Importance Predictor**

$$I_i = LayerNorm(GeLU(h_iE_1))E_2^{\top} + b$$

$$I = \sum_{i=0}^{L} ReLU(I_i)$$



(b) Importance Predictor



#### **Gate Controller**

$$egin{aligned} G^{'} &= Binarizer(G) \ G^{'}_{i} &= egin{cases} 1, & ext{if } G_{i} > k \ 0, & ext{if } G_{i} \leq k \ \end{bmatrix} \ G^{e} &= G^{'} \odot (\neg BoW(p)) \ \mathcal{G}(p) &= G^{e} + BoW(p) \end{aligned}$$



(c) Gating Controller



### **Training Object**

$$L_{rank}(q_i, p_{i,+}, P_{i,-}) = -\log rac{e^{\left\langle q'_i, p'_{i,+} 
ight
angle}}{\sum_{j=1}^M e^{\left\langle q'_i, p'_{j,+} 
ight
angle + \sum_{k=1}^N e^{\left\langle q'_i, p'_{i,k,-} 
ight
angle}}$$

$$L_{exp} = -\lambda_1 \sum_{j \in \{m | T_m = 0\}} log(1 - G_j) - \lambda_2 \sum_{k \in \{m | T_m = 1\}} logG_k$$

 $L = L_{rank} + L_{exp}$ 



## Training the Expansion-augmented Gating Controller

Table: Different kinds of term expansion.

| Expansion type | Description and examples                 |  |  |  |  |
|----------------|------------------------------------------|--|--|--|--|
| Passage2query  | Expand words that tend to appear in      |  |  |  |  |
| Fassayezquery  | corresponding queries, e.g. "how far".   |  |  |  |  |
| Suponum        | Expand synonym for original core words,  |  |  |  |  |
| Synonym        | e.g. "cartoon"->"animation".             |  |  |  |  |
|                | Expand co-occurrence words for original  |  |  |  |  |
| CO-Occurrence  | core words, e.g. "earthquakes"->"ruins". |  |  |  |  |
| Summarization  | Expand words that tend to appear         |  |  |  |  |
| Summanzation   | in passage summarization or taggs.       |  |  |  |  |





SparTerm Method Evaluation Analysis

#### Evaluation on public tasks

#### MSMARCO(community QA task from Microsoft Bing Search)

|                        | MS MARCO Passage   |       |       |       |                           | MS MARCO Passage |       |       |       |         | TREC2019DL | MS MARCO |
|------------------------|--------------------|-------|-------|-------|---------------------------|------------------|-------|-------|-------|---------|------------|----------|
| Model                  | Dev (full ranking) |       |       |       | Local Eval (full ranking) |                  |       |       |       | Passage | Doc Dev    |          |
|                        | MRR@10             | R@10  | R@50  | R@100 | R@1000                    | MRR@10           | R@10  | R@50  | R@100 | R@1000  | NDCG@10    | MRR@10   |
| BM25*                  | 19.47              | 40.59 | 61.47 | 69.33 | 85.71                     | 18.68            | 38.68 | 58.25 | 66.18 | 85.94   | 50.61      | 24.52    |
| Doc2query*             | 21.98              | 44.66 | 65.31 | 72.19 | 89.27                     | 14.98            | 31.75 | 50.26 | 59.22 | 81.42   | 51.40      | -        |
| Doc2query-T5*          | 27.68              | 54.11 | 75.61 | 81.89 | 94.71                     | 26.69            | 54.21 | 74.38 | 81.71 | 94.66   | 64.20      | -        |
| DeepCT* <sup>†</sup>   | 24.30              | 49.00 | 69.00 | 76.00 | 91.00                     | 24.16            | 47.99 | 68.30 | 75.32 | 90.73   | 55.10      | 28.70    |
| EPIC+BM25 <sup>†</sup> | 27.30              | -     | -     | -     | -                         | -                | -     | -     | -     | -       | -          | -        |
| Dense Retrieval‡       | 30.80              | -     | -     | -     | 92.80                     |                  |       |       |       |         | 59.40      | -        |
| SparTerm               | 31.26              | 56.42 | 75.29 | 81.60 | 93.80                     | 30.46            | 55.71 | 75.47 | 81.79 | 93.84   | 59.32      | 30.57    |
| SparTerm-literal       | 28.41              | 52.33 | 71.82 | 78.14 | 91.28                     | 27.60            | 50.90 | 70.16 | 77.06 | 90.91   | 56.04      | 28.50    |

#### A comparable top ranking performance to PLM-based dense model!



#### Evaluation on public tasks

ICT(Extremely lexical matching) and NQ(Extremely semantic matching)



Combining results of both tasks, SparTerm achieves a good balance between exact lexical matching and semantic-level matching!

Figure 7: Performance of different models on ICT and NQ tasks. For both tasks, we use the recall of the golden passage to measure the performance.



### Evaluation on commercial datasets

Auto-evaluation and human-evaluation for SparTerm on commercial scenarios



Figure 4: Performance of the product baseline and SparTerm on Commercial Dataset. (a) shows the results of automatic metrics. (b) shows the results of A/B test by human evaluation. "-en" denotes the English version and "-fr" the French version.





#### SparTerm Method Evaluatio Analysis

### Why SparTerm works?

#### Performance under Various Lexical Overlaps



Figure 5: Performance changes of models under different lexical overlaps.

Table 4: The partition intervals of different overlap levels and the number of queries in each level. L represents the level of lexical overlap between the query and the ground truth passages. O is the range of overlap rate and N is the number of queries in each level.

| L | =1  | >0.8    | >0.6      | >0.4              | >0.2              | >0                |
|---|-----|---------|-----------|-------------------|-------------------|-------------------|
| 0 | o=1 | 0.8<0<1 | 0.6<0≤0.8 | $0.4 < o \le 0.6$ | $0.2 < o \le 0.4$ | $0 \le o \le 0.2$ |
| Ν | 736 | 857     | 2630      | 1900              | 728               | 129               |

#### SparTerm woks on both hot queries and rare queries!



## Why SparTerm works?

#### Performance under Various Lexical Overlaps



Figure 6: Query terms hit ratio and average weights (normalized) distribution for "good cases" of SparTerm and DeepcT. "good cases" refers to cases that the relevant document is ranked to top-1000 when  $0 \le o \le 0.2$  in Table 4. DeepCT obtains more sharp weight distribution and "put all bets" on the potentially most discriminate words.

SparTerm increases the lexical overlap by term expansion, therefore hitting more terms in queries to improve its retrieval performance



### Literal term weighting compared to DeepCT

- DeepCT obtains sparser and sharper distributions
- SparTerm "rewards" more words that are contextually-relevant and topic related



Figure 8: Term weightings of different passages weighted by DeepCT and SparTerm, and the mutual weighting contribution matrix predicted by SparTerm. The depth of the color represents the term weights, deeper is higher.



#### How terms are expanded?

#### Passage2Query:

 $** \rightarrow how$ 

Synonyms:

 $\text{drugs} \rightarrow \text{medication}$ 

Co-occurrence:

season, heat  $\rightarrow$  summer

Maybe the general knowledge from PLM?

| Query:             | Medication for gum disease                                                                                                                                                                                                                                                              |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Passage:           | Drugs Used to Treat Gum Disease Antibiotic treatments can be used<br>either in combination with surgery and other therapies, or alone, to<br>reduce or temporarily eliminate the bacteria associated with gum<br>disease or suppress destruction of the tooth's attachment to the bone. |
| Expanded<br>terms: | how, medication, doctors, medicine, cure, healing,                                                                                                                                                                                                                                      |





#### Ablation studies verify

- The claim that term expansion can benefit from the e2e ranking optimization (#2)
- The necessity of retaining literal terms forcibly (#3)
- The effectiveness of our decoupling of term weighting and sparsification (#4,#5,#6)

| # | Model                                                   | MRR@10 | R@10  | R@50  | R@100 | R@500 | R@1000 | Sparsity |
|---|---------------------------------------------------------|--------|-------|-------|-------|-------|--------|----------|
| 1 | SparTerm                                                | 31.26  | 56.42 | 75.29 | 81.60 | 91.19 | 93.80  | 99.46    |
| 2 | SparTerm (w/o joint learning)                           | 30.51  | 54.92 | 74.47 | 81.34 | 90.76 | 93.21  | 99.37    |
| 3 | SparTerm (w/o retaining literal)                        | 20.03  | 40.13 | 61.10 | 67.80 | 81.65 | 85.39  | 99.52    |
| 4 | SparTerm (w/o gating controller,w/ topk-sparsification) | 28.79  | 51.87 | 71.19 | 77.69 | 88.31 | 91.49  | 99.16    |
| 5 | SparTerm (w/o gating controller,w/ th-sparsification)   | 30.12  | 53.74 | 73.47 | 79.73 | 89.5  | 92.57  | 0.00     |
| 6 | SparTerm (w/o gating controller, w/ L1-sparsification)  | 22.98  | 41.47 | 62.05 | 69.81 | 82.24 | 86.44  | 98.65    |



# Further more, let SparTerm do more things that TF-IDF can do

- News tagging
- Key phrase extraction



#### Label

微软:来这个开源的网站看看我们是如何拥抱开源的

Even the terms in titles/queries are limited(biased), SparTerm can recognized other important terms!



#### How SparTerm helps the commercial search engine

- SparTerm has been applied in the first-stage retrieval of \*\* search engine
- Significant improvements over online method on Human Diff Evaluation
- Indexing efficiency optimization: 20 billion doc titles/day
- Support multilingual versions



This is what SparTerm focuses on!!





Introduction: Sparse vs. Dense Representation

Related Work: Neural Sparse Representation

SparTerm

**Conclusion and Future Work** 

#### **Conclusions and Future Work**

SparTerm: A term-based sparse representation learning method

- A better trade-off of representation capacity vs. sparsity
- A framework has been applied in commercial search engine
- Future Work
  - Large scale pre-training task for SparTerm, towards: stable, un-biased performance
  - Multi-grained term weighting
  - Combination of sparse and dense methods



#### Towards stable and un-biased term weighting

Stably outperforms BM25 in all scenarios w/o specific fine-tuning?

- Self-supervised training task designing(use BM25/query likelihood signals?)
- Training on large user click data

|                      | BioASQ 7 |             |             | BioASQ 8 |             |             | . Fo   | orum Tra    | vel         | Forum Ubuntu |             |             |
|----------------------|----------|-------------|-------------|----------|-------------|-------------|--------|-------------|-------------|--------------|-------------|-------------|
|                      | МАР      | Prec<br>@10 | nDCG<br>@10 | МАР      | Prec<br>@10 | nDCG<br>@10 | МАР    | Prec<br>@10 | nDCG<br>@10 | МАР          | Prec<br>@10 | nDCG<br>@10 |
| NEURAL MODELS        |          |             |             |          |             |             |        |             |             |              |             |             |
| ICT*                 | 9.31*    | 3.84*       | $11.44^{*}$ | 9.31*    | 3.36*       | 11.78*      | 3.66*  | 11.60*      | 12.04*      | 8.93*        | 21.60*      | 23.21*      |
| Ngram*               | 9.17*    | 3.86*       | 11.53*      | 8.81*    | $2.84^{*}$  | $10.74^{*}$ | 10.00  | 25.60       | 28.53       | 9.44*        | $22.00^{*}$ | $23.90^{*}$ |
| $QA^{\dagger}$       | 17.80*   | 7.46*       | 21.93*      | 14.61*   | 4.26*       | $17.09^{*}$ | 11.00  | 27.60       | 28.32       | 17.78        | 34.00       | 34.73       |
| QGen <sup>‡</sup>    | 32.45    | 13.48       | 37.23       | 30.32    | 9.36        | 34.53       | 11.79  | 32.00       | 33.34       | 17.97        | 32.40       | 36.11       |
| TERM/HYBRID MODELS   |          |             |             |          |             |             |        |             |             |              |             |             |
| BM25*                | 45.12*   | 20.66       | 50.33*      | 38.61*   | 11.94*      | 42.78*      | 15.41* | 37.60       | 39.21       | 16.23*       | 31.20*      | 35.16*      |
| QGenHyb <sup>‡</sup> | 46.78    | 20.60       | 52.16       | 41.73    | 12.84       | 46.18       | 18.19  | 40.80       | 43.92       | 21.97        | 39.60       | 43.91       |

#### Still challenging!

Ma, Ji, et al. "Zero-shot Neural Passage Retrieval via Domain-targeted Synthetic Question Generation"



### Multi-grained term weighting

- There is a tokenization gap between PrLMs and IR systems
  - PrLMs use wordpieces while IR systems use words and phrases
  - The tokenization(granularity) gap is bigger for Chinese

We may need to try multi-grained term weighting!





#### Combination of sparse and dense methods

How to combine sparse and dense representation

- Ensemble style (DUALRM by Gao, Luyu, et al.)
- Sparse for Doc but dense for term? (COIL by Gao, Luyu, et al.)

 $s_{\text{DUALRM}}(q, d) = \lambda_{\text{test}} s_{\text{lex}}(q, d) + s_{\text{emb}}(q, d)$ 



Gao, Luyu, et al. "Complement lexical retrieval model with semantic residual embeddings.".





Introduction: Sparse vs. Dense Representation

Related Work: Neural Sparse Representation

SparTerm

**Conclusion and Future Work** 

# Thank you!

#### 把数字世界带入每个人、每个家庭、 每个组织,构建万物互联的智能世界。

Bring digital to every person, home and organization for a fully connected, intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.

